Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal ministère de l'Agriculture (DGER) CNIV Bordeaux Sciences Agro Université Champagne-Ardenne IFV ISVV

Home page

PhD defense, February 13th, 2019

PHD, February 13th, 2019
Florian Rançon PhD defense will take place at IMS Bordeaux (lecture hall), February 13th (10 a.m.), 2019

Title

Color and hyperspectral imaging for the detection and characterization of Grapevine Trunk Diseases

  • Mr. D. Rousseau, Professor, University of Angers, Reviewer
  • Mr. L. Macaire, Professor, University of Lille 1, Reviewer
  • Mr. B. Tisseyre, Professor, Montpellier Sup-Agro, Examiner
  • Mr. C. Germain, Professor, Bordeaux Sciences Agro,  PhD Supervisor
  • Mr. L. Bombrun, Lecturer, Bordeaux Sciences Agro, Co-Supervisor

Abstract

Grapevine wood diseases in the vineyard are responsible for significant economic losses in the wine industry. These diseases of fungal origin are caracterised by a degradation of the wooded part of the plant material and by the erratic appearance of characteristic symptoms on the leaf part. This thesis is dedicated to the study of these diseases (mainly esca disase) using two imaging sensors and proximal sensing.
The issue of visible symptom detection is first addressed using an RGB color sensor to acquire an image for each plant automatically or semi-automatically. The recognition of symptoms is approached in two stages, firstly by considering the classification at leaf-scale and then the detection at the plant-scale. The particularity of this study is the inclusion of confounding factors in the classification problem, taking advantage of the shape information of esca symptoms to differentiate them from other disorders and diseases. For this purpose, a comparison between SIFT approaches and recent transfer learning approaches is then conducted.

The results then lead us to consider a simple deep learning architecture (RetinaNet) for the detection of the symptoms on the images, making it possible to estimate a level of disease severity for each vineplant.
The second sensor used, a hyperspectral camera covering the spectrum from 500 nm to 1300 nm, tries to tackle a more experimental problem, namely the spectral behavior of the diseased plants which may lead to early detection of diseased plants without foliar symptoms. An experimental protocol and a database of spectra are then formed for the occasion. The dimensionality reduction methods make it possible to exploit the hyperspectral information or even to isolate the wavelengths associated with each class. However, the data do not allow, for the measured wavelength range
and in the field acquisition conditions, to perform early detection of the disease on the plant without symptoms.
The differences and similarities between each of these two applications, in terms of database constitution, algorithms, difficulties and application potential in real conditions are discussed throughout the manuscript.